The article will tell you how to make a homemade one with your own hands. You can use absolutely any circuits, but the simplest manufacturing option is to remake a computer power supply. If you have such a block, it will be quite easy to find a use for it. To power motherboards, voltages of 5, 3.3, 12 Volts are used. As you understand, the voltage of interest to you is 12 Volts. The charger will allow you to charge batteries whose capacity ranges from 55 to 65 Ampere-hours. In other words, it is enough to recharge the batteries of most cars.

General view of the diagram

To make the alteration, you need to use the diagram presented in the article. made with your own hands from the power supply of a personal computer, allows you to control the charging current and voltage at the output. It is necessary to pay attention to the fact that there is protection against short circuit - a 10 Ampere fuse. But it is not necessary to install it, since most power supplies of personal computers have protection that turns off the device in the event of a short circuit. Therefore, charger circuits for batteries from computer power supplies are able to protect themselves from short circuits.

The PSI controller (designated DA1), as a rule, is used in the power supply of two types - KA7500 or TL494. Now a little theory. Can a computer's power supply properly charge the battery? The answer is yes, since lead batteries in most cars have a capacity of 55-65 Ampere-hour. And for normal charging it needs a current equal to 10% of the battery capacity - no more than 6.5 Amperes. If the power supply has a power of over 150 W, then its “+12 V” circuit is capable of delivering such current.

Initial stage of remodeling

To replicate a simple homemade battery charger, you need to slightly improve the power supply:

  1. Get rid of all unnecessary wires. Use a soldering iron to remove them so as not to interfere.
  2. Using the diagram given in the article, find a constant resistor R1, which must be unsoldered and in its place install a trimmer with a resistance of 27 kOhm. A constant voltage of “+12 V” must subsequently be applied to the upper contact of this resistor. Without this, the device will not be able to operate.
  3. The 16th pin of the microcircuit is disconnected from the minus.
  4. Next, you need to disconnect the 15th and 14th pins.

It turns out to be quite simple and homemade. You can use any circuits, but it’s easier to make it from a computer power supply - it’s lighter, easier to use, and more affordable. When compared with transformer devices, the mass of the devices differs significantly (as do the dimensions).

Charger adjustments

The back wall will now be the front; it is advisable to make it from a piece of material (textolite is ideal). On this wall it is necessary to install a charging current regulator, indicated in the diagram R10. It is best to use a current-sensing resistor as powerful as possible - take two with a power of 5 W and a resistance of 0.2 Ohm. But it all depends on the choice of battery charger circuit. Some designs do not require the use of high-power resistors.

When connecting them in parallel, the power is doubled, and the resistance becomes equal to 0.1 Ohm. On the front wall there are also indicators - a voltmeter and an ammeter, which allow you to monitor the relevant parameters of the charger. To fine-tune the charger, a trimming resistor is used, with which voltage is supplied to the 1st pin of the PHI controller.

Device requirements

Final assembly

Multi-core thin wires must be soldered to pins 1, 14, 15 and 16. Their insulation must be reliable so that heating does not occur under load, otherwise the homemade car charger will fail. After assembly, you need to set the voltage with a trimming resistor to about 14 Volts (+/-0.2 V). This is the voltage that is considered normal for charging batteries. Moreover, this value should be in idle mode (without a connected load).

You must install two alligator clips on the wires that connect to the battery. One is red, the other is black. These can be purchased at any hardware or auto parts store. This is how you get a simple homemade charger for a car battery. Connection diagrams: black is attached to the minus, and red to the plus. The charging process is completely automatic, no human intervention is required. But it is worth considering the main stages of this process.

Battery charging process

During the initial cycle, the voltmeter will show a voltage of approximately 12.4-12.5 V. If the battery has a capacity of 55 Ah, then you need to rotate the regulator until the ammeter shows a value of 5.5 Amperes. This means that the charging current is 5.5 A. As the battery charges, the current decreases and the voltage tends to a maximum. As a result, at the very end the current will be 0 and the voltage will be 14 V.

Regardless of the selection of circuits and designs of chargers used for manufacturing, the operating principle is largely similar. When the battery is fully charged, the device begins to compensate for the self-discharge current. Therefore, you do not risk the battery overcharging. Therefore, the charger can be connected to the battery for a day, a week, or even a month.

If you don’t have measuring instruments that you wouldn’t mind installing in the device, you can refuse them. But for this it is necessary to make a scale for the potentiometer - to indicate the position for the charging current values ​​​​of 5.5 A and 6.5 A. Of course, the installed ammeter is much more convenient - you can visually observe the process of charging the battery. But a battery charger, made with your own hands without the use of equipment, can be easily used.

I came across a diagram of a two-channel charger on the Internet. I didn’t make it for two channels at once, since there was no need - I assembled one. The circuit is fully functional and charges perfectly.

Charging circuit for car batteries

Charger Specifications

  • Mains voltage 220 V.
  • Output voltage 2 x 16 V.
  • Charge current 1 - 10 A.
  • Discharge current 0.1 - 1 A.
  • The form of the charge current is a half-wave rectifier.
  • Battery capacity 10 - 100 A/h.
  • The voltage of the batteries being charged is 3.6 - 12 V.

Description of operation: this is a two-channel charger-discharge device with separate adjustment of the charge current and discharge current, which is very convenient and allows you to select the optimal recovery modes for the battery plates based on their technical condition. The use of a cyclic recovery mode leads to a significant reduction in the yield of hydrogen sulfide and oxygen gases due to their complete use in the chemical reaction, the internal resistance and capacity are quickly restored to working condition, there is no overheating of the housing and warping of the plates.

The discharge current when charging with an asymmetric current should be no more than 1/5 of the charging current. Manufacturers' instructions require discharging the battery before charging, that is, forming the plates before charging. There is no need to look for a suitable discharge load; it is enough to perform the appropriate switching in the device. It is advisable to carry out control discharge with a current of 0.05 C from the battery capacity for 20 hours. The circuit allows the plates of two batteries to be formed simultaneously with separate installation of the discharge and charging current.

The current regulators represent key regulators on powerful field-effect transistors VT1, VT2.
Optocouplers are installed in the feedback circuits, which are necessary to protect the transistors from overload. At high charge currents, the influence of capacitors C3, C4 is minimal and an almost half-wave current lasting 5 ms with a pause of 5 ms accelerates the recovery of battery plates, due to a pause in the recovery cycle, overheating of the plates and electrolysis does not occur, the recombination of electrolyte ions is improved with full use in chemical reactions of hydrogen and oxygen atoms.

Capacitors C2, C3, operating in voltage multiplication mode, when switching diodes VD1, VD2, create an additional impulse to melt coarse-crystalline sulfation and convert lead oxide into amorphous lead. The current regulators of both channels R2, R5 are powered by parametric voltage stabilizers on zener diodes VD3, VD4. Resistors R7, R8 in the gate circuits of field-effect transistors VT1, VT2 limit the gate current to a safe value.

Optocoupler transistors U1, U2 are designed to shunt the gate voltage of field-effect transistors when overloaded with charging or discharging currents. The control voltage is removed from resistors R13, R14 in the drain circuits, through trimming resistors R11, R12 and through limiting resistors R9, R10 to the optocoupler LEDs. With increased voltage across resistors R13, R14, the optocoupler transistors open and reduce the control voltage at the gates of the field-effect transistors, the currents in the drain-source circuit decrease.

Discuss the article SIMPLE ADJUSTABLE CAR CHARGER

This is a very simple attachment circuit for your existing charger. Which will monitor the battery charge voltage and, when the set level is reached, disconnect it from the charger, thereby preventing the battery from overcharging.
This device has absolutely no scarce parts. The entire circuit is built on just one transistor. It has LED indicators that indicate the status: charging in progress or the battery is charged.

Who will benefit from this device?

This device will definitely come in handy for motorists. For those who do not have an automatic charger. This device will turn your regular charger into a fully automatic charger. You no longer have to constantly monitor the charging of your battery. All you need to do is put the battery on charge, and it will turn off automatically only after it is fully charged.

Automatic charger circuit


Here is the actual circuit diagram of the machine. In fact, it is a threshold relay that is activated when a certain voltage is exceeded. The response threshold is set by variable resistor R2. For a fully charged car battery, it is usually equal to - 14.4 V.
You can download the diagram here -

Printed circuit board


How to make a printed circuit board is up to you. It is not complicated and therefore can easily be laid out on a breadboard. Well, or you can get confused and make it on textolite with etching.

Settings

If all the parts are in good working order, setting up the machine is reduced only to setting the threshold voltage with resistor R2. To do this, we connect the circuit to the charger, but do not connect the battery yet. We move resistor R2 to the lowest position according to the diagram. We set the output voltage on the charger to 14.4 V. Then slowly rotate the variable resistor until the relay operates. Everything is set.
Let's play with the voltage to make sure that the console works reliably at 14.4 V. After this, your automatic charger is ready for use.
In this video you can watch in detail the process of all assembly, adjustment and testing in operation.

Assessing the characteristics of a particular charger is difficult without understanding how an exemplary charge of a li-ion battery should actually proceed. Therefore, before moving directly to the diagrams, let's remember a little theory.

What are lithium batteries?

Depending on what material the positive electrode of a lithium battery is made of, there are several varieties:

  • with lithium cobaltate cathode;
  • with a cathode based on lithiated iron phosphate;
  • based on nickel-cobalt-aluminium;
  • based on nickel-cobalt-manganese.

All of these batteries have their own characteristics, but since these nuances are not of fundamental importance for the general consumer, they will not be considered in this article.

Also, all li-ion batteries are produced in various sizes and form factors. They can be either cased (for example, the popular 18650 today) or laminated or prismatic (gel-polymer batteries). The latter are hermetically sealed bags made of a special film, which contain electrodes and electrode mass.

The most common sizes of li-ion batteries are shown in the table below (all of them have a nominal voltage of 3.7 volts):

Designation Standard size Similar size
XXYY0,
Where XX- indication of diameter in mm,
YY- length value in mm,
0 - reflects the design in the form of a cylinder
10180 2/5 AAA
10220 1/2 AAA (Ø corresponds to AAA, but half the length)
10280
10430 AAA
10440 AAA
14250 1/2 AA
14270 Ø AA, length CR2
14430 Ø 14 mm (same as AA), but shorter length
14500 AA
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (or 168S/600S)
18350
18490
18500 2xCR123 (or 150A/300P)
18650 2xCR123 (or 168A/600P)
18700
22650
25500
26500 WITH
26650
32650
33600 D
42120

Internal electrochemical processes proceed in the same way and do not depend on the form factor and design of the battery, so everything said below applies equally to all lithium batteries.

How to properly charge lithium-ion batteries

The most correct way to charge lithium batteries is to charge in two stages. This is the method Sony uses in all of its chargers. Despite a more complex charge controller, this ensures a more complete charge of li-ion batteries without reducing their service life.

Here we are talking about a two-stage charge profile for lithium batteries, abbreviated as CC/CV (constant current, constant voltage). There are also options with pulse and step currents, but they are not discussed in this article. You can read more about charging with pulsed current.

So, let's look at both stages of charging in more detail.

1. At the first stage A constant charging current must be ensured. The current value is 0.2-0.5C. For accelerated charging, it is allowed to increase the current to 0.5-1.0C (where C is the battery capacity).

For example, for a battery with a capacity of 3000 mAh, the nominal charge current at the first stage is 600-1500 mA, and the accelerated charge current can be in the range of 1.5-3A.

To ensure a constant charging current of a given value, the charger circuit must be able to increase the voltage at the battery terminals. In fact, at the first stage the charger works as a classic current stabilizer.

Important: If you plan to charge batteries with a built-in protection board (PCB), then when designing the charger circuit you need to make sure that the open circuit voltage of the circuit can never exceed 6-7 volts. Otherwise, the protection board may be damaged.

At the moment when the voltage on the battery rises to 4.2 volts, the battery will gain approximately 70-80% of its capacity (the specific capacity value will depend on the charging current: with accelerated charging it will be a little less, with a nominal charge - a little more). This moment marks the end of the first stage of charging and serves as a signal for the transition to the second (and final) stage.

2. Second charge stage- this is charging the battery with a constant voltage, but a gradually decreasing (falling) current.

At this stage, the charger maintains a voltage of 4.15-4.25 volts on the battery and controls the current value.

As the capacity increases, the charging current will decrease. As soon as its value decreases to 0.05-0.01C, the charging process is considered complete.

An important nuance of the correct charger operation is its complete disconnection from the battery after charging is complete. This is due to the fact that for lithium batteries it is extremely undesirable for them to remain under high voltage for a long time, which is usually provided by the charger (i.e. 4.18-4.24 volts). This leads to accelerated degradation of the chemical composition of the battery and, as a consequence, a decrease in its capacity. Long-term stay means tens of hours or more.

During the second stage of charging, the battery manages to gain approximately 0.1-0.15 more of its capacity. The total battery charge thus reaches 90-95%, which is an excellent indicator.

We looked at two main stages of charging. However, coverage of the issue of charging lithium batteries would be incomplete if another charging stage were not mentioned - the so-called. precharge.

Preliminary charge stage (precharge)- this stage is used only for deeply discharged batteries (below 2.5 V) to bring them to normal operating mode.

At this stage, the charge is provided with a reduced constant current until the battery voltage reaches 2.8 V.

The preliminary stage is necessary to prevent swelling and depressurization (or even explosion with fire) of damaged batteries that have, for example, an internal short circuit between the electrodes. If a large charge current is immediately passed through such a battery, this will inevitably lead to its heating, and then it depends.

Another benefit of precharging is pre-heating the battery, which is important when charging at low ambient temperatures (in an unheated room during the cold season).

Intelligent charging should be able to monitor the voltage on the battery during the preliminary charging stage and, if the voltage does not rise for a long time, draw a conclusion that the battery is faulty.

All stages of charging a lithium-ion battery (including the pre-charge stage) are schematically depicted in this graph:

Exceeding the rated charging voltage by 0.15V can reduce the battery life by half. Lowering the charge voltage by 0.1 volt reduces the capacity of a charged battery by about 10%, but significantly extends its service life. The voltage of a fully charged battery after removing it from the charger is 4.1-4.15 volts.

Let me summarize the above and outline the main points:

1. What current should I use to charge a li-ion battery (for example, 18650 or any other)?

The current will depend on how quickly you would like to charge it and can range from 0.2C to 1C.

For example, for a battery size 18650 with a capacity of 3400 mAh, the minimum charge current is 680 mA, and the maximum is 3400 mA.

2. How long does it take to charge, for example, the same 18650 batteries?

The charging time directly depends on the charging current and is calculated using the formula:

T = C / I charge.

For example, the charging time of our 3400 mAh battery with a current of 1A will be about 3.5 hours.

3. How to properly charge a lithium polymer battery?

All lithium batteries charge the same way. It doesn't matter whether it is lithium polymer or lithium ion. For us, consumers, there is no difference.

What is a protection board?

The protection board (or PCB - power control board) is designed to protect against short circuit, overcharge and overdischarge of the lithium battery. As a rule, overheating protection is also built into protection modules.

For safety reasons, it is prohibited to use lithium batteries in household appliances unless they have a built-in protection board. That's why all cell phone batteries always have a PCB board. The battery output terminals are located directly on the board:

These boards use a six-legged charge controller on a specialized device (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 and other analogues). The task of this controller is to disconnect the battery from the load when the battery is completely discharged and disconnect the battery from charging when it reaches 4.25V.

Here, for example, is a diagram of the BP-6M battery protection board that was supplied with old Nokia phones:

If we talk about 18650, they can be produced either with or without a protection board. The protection module is located near the negative terminal of the battery.

The board increases the length of the battery by 2-3 mm.

Batteries without a PCB module are usually included in batteries that come with their own protection circuits.

Any battery with protection can easily turn into a battery without protection; you just need to gut it.

Today, the maximum capacity of the 18650 battery is 3400 mAh. Batteries with protection must have a corresponding designation on the case ("Protected").

Do not confuse the PCB board with the PCM module (PCM - power charge module). If the former serve only the purpose of protecting the battery, then the latter are designed to control the charging process - they limit the charge current at a given level, control the temperature and, in general, ensure the entire process. The PCM board is what we call a charge controller.

I hope now there are no questions left, how to charge an 18650 battery or any other lithium battery? Then we move on to a small selection of ready-made circuit solutions for chargers (the same charge controllers).

Charging schemes for li-ion batteries

All circuits are suitable for charging any lithium battery; all that remains is to decide on the charging current and the element base.

LM317

Diagram of a simple charger based on the LM317 chip with a charge indicator:

The circuit is the simplest, the whole setup comes down to setting the output voltage to 4.2 volts using trimming resistor R8 (without a connected battery!) and setting the charging current by selecting resistors R4, R6. The power of resistor R1 is at least 1 Watt.

As soon as the LED goes out, the charging process can be considered completed (the charging current will never decrease to zero). It is not recommended to keep the battery on this charge for a long time after it is fully charged.

The lm317 microcircuit is widely used in various voltage and current stabilizers (depending on the connection circuit). It is sold on every corner and costs pennies (you can take 10 pieces for only 55 rubles).

LM317 comes in different housings:

Pin assignment (pinout):

Analogues of the LM317 chip are: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, KR142EN12, KR1157EN1 (the last two are domestically produced).

The charging current can be increased to 3A if you take LM350 instead of LM317. It will, however, be more expensive - 11 rubles/piece.

The printed circuit board and circuit assembly are shown below:

The old Soviet transistor KT361 can be replaced with a similar pnp transistor (for example, KT3107, KT3108 or bourgeois 2N5086, 2SA733, BC308A). It can be removed altogether if the charge indicator is not needed.

Disadvantage of the circuit: the supply voltage must be in the range of 8-12V. This is due to the fact that for normal operation of the LM317 chip, the difference between the battery voltage and the supply voltage must be at least 4.25 Volts. Thus, it will not be possible to power it from the USB port.

MAX1555 or MAX1551

MAX1551/MAX1555 are specialized chargers for Li+ batteries, capable of operating from USB or from a separate power adapter (for example, a phone charger).

The only difference between these microcircuits is that MAX1555 produces a signal to indicate the charging process, and MAX1551 produces a signal that the power is on. Those. 1555 is still preferable in most cases, so 1551 is now difficult to find on sale.

A detailed description of these microcircuits from the manufacturer is.

The maximum input voltage from the DC adapter is 7 V, when powered by USB - 6 V. When the supply voltage drops to 3.52 V, the microcircuit turns off and charging stops.

The microcircuit itself detects at which input the supply voltage is present and connects to it. If the power is supplied via the USB bus, then the maximum charging current is limited to 100 mA - this allows you to plug the charger into the USB port of any computer without fear of burning the south bridge.

When powered by a separate power supply, the typical charging current is 280 mA.

The chips have built-in overheating protection. But even in this case, the circuit continues to operate, reducing the charge current by 17 mA for each degree above 110 ° C.

There is a pre-charge function (see above): as long as the battery voltage is below 3V, the microcircuit limits the charge current to 40 mA.

The microcircuit has 5 pins. Here is a typical connection diagram:

If there is a guarantee that the voltage at the output of your adapter cannot under any circumstances exceed 7 volts, then you can do without the 7805 stabilizer.

The USB charging option can be assembled, for example, on this one.

The microcircuit does not require either external diodes or external transistors. In general, of course, gorgeous little things! Only they are too small and inconvenient to solder. And they are also expensive ().

LP2951

The LP2951 stabilizer is manufactured by National Semiconductors (). It provides the implementation of a built-in current limiting function and allows you to generate a stable charge voltage level for a lithium-ion battery at the output of the circuit.

The charge voltage is 4.08 - 4.26 volts and is set by resistor R3 when the battery is disconnected. The voltage is kept very precisely.

The charge current is 150 - 300mA, this value is limited by the internal circuits of the LP2951 chip (depending on the manufacturer).

Use the diode with a small reverse current. For example, it can be any of the 1N400X series that you can purchase. The diode is used as a blocking diode to prevent reverse current from the battery into the LP2951 chip when the input voltage is turned off.

This charger produces a fairly low charging current, so any 18650 battery can charge overnight.

The microcircuit can be purchased both in a DIP package and in a SOIC package (costs about 10 rubles per piece).

MCP73831

The chip allows you to create the right chargers, and it’s also cheaper than the much-hyped MAX1555.

A typical connection diagram is taken from:

An important advantage of the circuit is the absence of low-resistance powerful resistors that limit the charge current. Here the current is set by a resistor connected to the 5th pin of the microcircuit. Its resistance should be in the range of 2-10 kOhm.

The assembled charger looks like this:

The microcircuit heats up quite well during operation, but this does not seem to bother it. It fulfills its function.

Here is another version of a printed circuit board with an SMD LED and a micro-USB connector:

LTC4054 (STC4054)

Very simple scheme, great option! Allows charging with current up to 800 mA (see). True, it tends to get very hot, but in this case the built-in overheating protection reduces the current.

The circuit can be significantly simplified by throwing out one or even both LEDs with a transistor. Then it will look like this (you must admit, it couldn’t be simpler: a pair of resistors and one condenser):

One of the printed circuit board options is available at . The board is designed for elements of standard size 0805.

I=1000/R. You shouldn’t set a high current right away; first see how hot the microcircuit gets. For my purposes, I took a 2.7 kOhm resistor, and the charge current turned out to be about 360 mA.

It is unlikely that it will be possible to adapt a radiator to this microcircuit, and it is not a fact that it will be effective due to the high thermal resistance of the crystal-case junction. The manufacturer recommends making the heat sink “through the leads” - making the traces as thick as possible and leaving the foil under the chip body. In general, the more “earth” foil left, the better.

By the way, most of the heat is dissipated through the 3rd leg, so you can make this trace very wide and thick (fill it with excess solder).

The LTC4054 chip package may be labeled LTH7 or LTADY.

LTH7 differs from LTADY in that the first can lift a very low battery (on which the voltage is less than 2.9 volts), while the second cannot (you need to swing it separately).

The chip turned out to be very successful, so it has a bunch of analogues: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, 2, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Before using any of the analogues, check the datasheets.

TP4056

The microcircuit is made in a SOP-8 housing (see), it has a metal heat sink on its belly that is not connected to the contacts, which allows for more efficient heat removal. Allows you to charge the battery with a current of up to 1A (the current depends on the current-setting resistor).

The connection diagram requires the bare minimum of hanging elements:

The circuit implements the classical charging process - first charging with a constant current, then with a constant voltage and a falling current. Everything is scientific. If you look at charging step by step, you can distinguish several stages:

  1. Monitoring the voltage of the connected battery (this happens all the time).
  2. Precharge phase (if the battery is discharged below 2.9 V). Charge with a current of 1/10 from the one programmed by the resistor R prog (100 mA at R prog = 1.2 kOhm) to a level of 2.9 V.
  3. Charging with a maximum constant current (1000 mA at R prog = 1.2 kOhm);
  4. When the battery reaches 4.2 V, the voltage on the battery is fixed at this level. A gradual decrease in the charging current begins.
  5. When the current reaches 1/10 of the one programmed by the resistor R prog (100 mA at R prog = 1.2 kOhm), the charger turns off.
  6. After charging is complete, the controller continues monitoring the battery voltage (see point 1). The current consumed by the monitoring circuit is 2-3 µA. After the voltage drops to 4.0V, charging starts again. And so on in a circle.

The charge current (in amperes) is calculated by the formula I=1200/R prog. The permissible maximum is 1000 mA.

A real charging test with a 3400 mAh 18650 battery is shown in the graph:

The advantage of the microcircuit is that the charge current is set by just one resistor. Powerful low-resistance resistors are not required. Plus there is an indicator of the charging process, as well as an indication of the end of charging. When the battery is not connected, the indicator blinks every few seconds.

The supply voltage of the circuit should be within 4.5...8 volts. The closer to 4.5V, the better (so the chip heats up less).

The first leg is used to connect a temperature sensor built into the lithium-ion battery (usually the middle terminal of a cell phone battery). If the output voltage is below 45% or above 80% of the supply voltage, charging is suspended. If you don't need temperature control, just plant that foot on the ground.

Attention! This circuit has one significant drawback: the absence of a battery reverse polarity protection circuit. In this case, the controller is guaranteed to burn out due to exceeding the maximum current. In this case, the supply voltage of the circuit directly goes to the battery, which is very dangerous.

The signet is simple and can be done in an hour on your knee. If time is of the essence, you can order ready-made modules. Some manufacturers of ready-made modules add protection against overcurrent and overdischarge (for example, you can choose which board you need - with or without protection, and with which connector).

You can also find ready-made boards with a contact for a temperature sensor. Or even a charging module with several parallel TP4056 microcircuits to increase the charging current and with reverse polarity protection (example).

LTC1734

Also a very simple scheme. The charging current is set by resistor R prog (for example, if you install a 3 kOhm resistor, the current will be 500 mA).

Microcircuits are usually marked on the case: LTRG (they can often be found in old Samsung phones).

Any pnp transistor is suitable, the main thing is that it is designed for a given charging current.

There is no charge indicator on the indicated diagram, but on the LTC1734 it is said that pin “4” (Prog) has two functions - setting the current and monitoring the end of the battery charge. For example, a circuit with control of the end of charge using the LT1716 comparator is shown.

The LT1716 comparator in this case can be replaced with a cheap LM358.

TL431 + transistor

It is probably difficult to come up with a circuit using more affordable components. The hardest part here is finding the TL431 reference voltage source. But they are so common that they are found almost everywhere (rarely does a power source do without this microcircuit).

Well, the TIP41 transistor can be replaced with any other one with a suitable collector current. Even the old Soviet KT819, KT805 (or less powerful KT815, KT817) will do.

Setting up the circuit comes down to setting the output voltage (without a battery!!!) using a trim resistor at 4.2 volts. Resistor R1 sets the maximum value of the charging current.

This circuit fully implements the two-stage process of charging lithium batteries - first charging with direct current, then moving to the voltage stabilization phase and smoothly reducing the current to almost zero. The only drawback is the poor repeatability of the circuit (it is capricious in setup and demanding on the components used).

MCP73812

There is another undeservedly neglected microcircuit from Microchip - MCP73812 (see). Based on it, we get a very budget-friendly charging option (and inexpensive!). The whole body kit is just one resistor!

By the way, the microcircuit is made in a solder-friendly package - SOT23-5.

The only negative is that it gets very hot and there is no charge indication. It also somehow doesn’t work very reliably if you have a low-power power source (which causes a voltage drop).

In general, if the charge indication is not important for you, and a current of 500 mA suits you, then the MCP73812 is a very good option.

NCP1835

A fully integrated solution is offered - NCP1835B, providing high stability of the charging voltage (4.2 ±0.05 V).

Perhaps the only drawback of this microcircuit is its too miniature size (DFN-10 case, size 3x3 mm). Not everyone can provide high-quality soldering of such miniature elements.

Among the undeniable advantages I would like to note the following:

  1. Minimum number of body parts.
  2. Possibility of charging a completely discharged battery (precharge current 30 mA);
  3. Determining the end of charging.
  4. Programmable charging current - up to 1000 mA.
  5. Charge and error indication (capable of detecting non-chargeable batteries and signaling this).
  6. Protection against long-term charging (by changing the capacitance of the capacitor C t, you can set the maximum charging time from 6.6 to 784 minutes).

The cost of the microcircuit is not exactly cheap, but also not so high (~$1) that you can refuse to use it. If you are comfortable with a soldering iron, I would recommend choosing this option.

A more detailed description is in.

Can I charge a lithium-ion battery without a controller?

Yes, you can. However, this will require close control of the charging current and voltage.

In general, it will not be possible to charge a battery, for example, our 18650, without a charger. You still need to somehow limit the maximum charge current, so at least the most primitive memory will still be required.

The simplest charger for any lithium battery is a resistor connected in series with the battery:

The resistance and power dissipation of the resistor depend on the voltage of the power source that will be used for charging.

As an example, let's calculate a resistor for a 5 Volt power supply. We will charge an 18650 battery with a capacity of 2400 mAh.

So, at the very beginning of charging, the voltage drop across the resistor will be:

U r = 5 - 2.8 = 2.2 Volts

Let's say our 5V power supply is rated for a maximum current of 1A. The circuit will consume the highest current at the very beginning of the charge, when the voltage on the battery is minimal and amounts to 2.7-2.8 Volts.

Attention: these calculations do not take into account the possibility that the battery may be very deeply discharged and the voltage on it may be much lower, even to zero.

Thus, the resistor resistance required to limit the current at the very beginning of the charge at 1 Ampere should be:

R = U / I = 2.2 / 1 = 2.2 Ohm

Resistor power dissipation:

P r = I 2 R = 1*1*2.2 = 2.2 W

At the very end of the battery charge, when the voltage on it approaches 4.2 V, the charge current will be:

I charge = (U ip - 4.2) / R = (5 - 4.2) / 2.2 = 0.3 A

That is, as we see, all values ​​do not go beyond the permissible limits for a given battery: the initial current does not exceed the maximum permissible charging current for a given battery (2.4 A), and the final current exceeds the current at which the battery no longer gains capacity ( 0.24 A).

The main disadvantage of such charging is the need to constantly monitor the voltage on the battery. And manually turn off the charge as soon as the voltage reaches 4.2 Volts. The fact is that lithium batteries tolerate even short-term overvoltage very poorly - the electrode masses begin to quickly degrade, which inevitably leads to loss of capacity. At the same time, all the prerequisites for overheating and depressurization are created.

If your battery has a built-in protection board, which was discussed just above, then everything becomes simpler. When a certain voltage is reached on the battery, the board itself will disconnect it from the charger. However, this charging method has significant disadvantages, which we discussed in.

The protection built into the battery will not allow it to be overcharged under any circumstances. All you have to do is control the charge current so that it does not exceed the permissible values ​​for a given battery (protection boards cannot limit the charge current, unfortunately).

Charging using a laboratory power supply

If you have a power supply with current protection (limitation), then you are saved! Such a power source is already a full-fledged charger that implements the correct charge profile, which we wrote about above (CC/CV).

All you need to do to charge li-ion is set the power supply to 4.2 volts and set the desired current limit. And you can connect the battery.

Initially, when the battery is still discharged, the laboratory power supply will operate in current protection mode (i.e., it will stabilize the output current at a given level). Then, when the voltage on the bank rises to the set 4.2V, the power supply will switch to voltage stabilization mode, and the current will begin to drop.

When the current drops to 0.05-0.1C, the battery can be considered fully charged.

As you can see, the laboratory power supply is an almost ideal charger! The only thing it can’t do automatically is make a decision to fully charge the battery and turn off. But this is a small thing that you shouldn’t even pay attention to.

How to charge lithium batteries?

And if we are talking about a disposable battery that is not intended for recharging, then the correct (and only correct) answer to this question is NO.

The fact is that any lithium battery (for example, the common CR2032 in the form of a flat tablet) is characterized by the presence of an internal passivating layer that covers the lithium anode. This layer prevents a chemical reaction between the anode and the electrolyte. And the supply of external current destroys the above protective layer, leading to damage to the battery.

By the way, if we talk about the non-rechargeable CR2032 battery, then the LIR2032, which is very similar to it, is already a full-fledged battery. It can and should be charged. Only its voltage is not 3, but 3.6V.

How to charge lithium batteries (be it a phone battery, 18650 or any other li-ion battery) was discussed at the beginning of the article.

85 kopecks/piece Buy MCP73812 65 RUR/pcs. Buy NCP1835 83 RUR/pcs. Buy *All chips with free shipping

Charger for car batteries.

It’s not new to anyone if I say that any motorist should have a battery charger in their garage. Of course, you can buy it in a store, but when faced with this question, I came to the conclusion that I don’t want to buy an obviously not very good device at an affordable price. There are those in which the charging current is regulated by a powerful switch, which adds or reduces the number of turns in the secondary winding of the transformer, thereby increasing or decreasing the charging current, while in principle there is no current control device. This is probably the cheapest option for a factory-made charger, but a smart device is not that cheap, the price is really steep, so I decided to find a circuit on the Internet and assemble it myself. The selection criteria were as follows:

A simple scheme, without unnecessary bells and whistles;
- availability of radio components;
- smooth adjustment of charging current from 1 to 10 amperes;
- it is desirable that this is a diagram of a charging and training device;
- not complicated setup;
- stability of operation (according to reviews of those who have already done this scheme).

After searching on the Internet, I came across an industrial circuit for a charger with regulating thyristors.

Everything is typical: a transformer, a bridge (VD8, VD9, VD13, VD14), a pulse generator with adjustable duty cycle (VT1, VT2), thyristors as switches (VD11, VD12), a charge control unit. Simplifying this design somewhat, we get a simpler diagram:

There is no charge control unit in this diagram, and the rest is almost the same: trans, bridge, generator, one thyristor, measuring heads and fuse. Please note that the circuit contains a KU202 thyristor; it is a little weak, so in order to prevent breakdown by high current pulses, it must be installed on a radiator. The transformer is 150 watt, or you can use a TS-180 from an old tube TV.

Adjustable charger with a charge current of 10A on the KU202 thyristor.

And one more device that does not contain scarce parts, with a charging current of up to 10 amperes. It is a simple thyristor power regulator with phase-pulse control.

The thyristor control unit is assembled on two transistors. The time during which capacitor C1 will charge before switching the transistor is set by variable resistor R7, which, in fact, sets the value of the battery charging current. Diode VD1 serves to protect the thyristor control circuit from reverse voltage. The thyristor, as in the previous schemes, is placed on a good radiator, or on a small one with a cooling fan. The printed circuit board of the control unit looks like this:

The scheme is not bad, but it has some disadvantages:
- fluctuations in supply voltage lead to fluctuations in the charging current;
- no short circuit protection other than a fuse;
- the device interferes with the network (can be treated with an LC filter).

Charging and restoring device for rechargeable batteries.

This pulse device can charge and restore almost any type of battery. The charging time depends on the condition of the battery and ranges from 4 to 6 hours. Due to the pulsed charging current, the battery plates are desulfated. See the diagram below.

In this scheme, the generator is assembled on a microcircuit, which ensures more stable operation. Instead of NE555 you can use the Russian analogue - timer 1006VI1. If anyone doesn’t like the KREN142 for powering the timer, it can be replaced with a conventional parametric stabilizer, i.e. resistor and zener diode with the required stabilization voltage, and reduce resistor R5 to 200 Ohm. Transistor VT1- on the radiator without fail, it gets very hot. The circuit uses a transformer with a secondary winding of 24 volts. A diode bridge can be assembled from diodes like D242. For better cooling of the transistor heatsink VT1 You can use a fan from a computer power supply or system unit cooling.

Restoring and charging the battery.

As a result of improper use of car batteries, their plates can become sulfated and the battery fails.
There is a known method for restoring such batteries when charging them with an “asymmetrical” current. In this case, the ratio of charging and discharging current is selected to be 10:1 (optimal mode). This mode allows you not only to restore sulfated batteries, but also to carry out preventive treatment of serviceable ones.


Rice. 1. Electrical circuit of the charger

In Fig. 1 shows a simple charger designed to use the method described above. The circuit provides a pulse charging current of up to 10 A (used for accelerated charging). To restore and train batteries, it is better to set the pulse charging current to 5 A. In this case, the discharge current will be 0.5 A. The discharge current is determined by the value of resistor R4.
The circuit is designed in such a way that the battery is charged by current pulses during one half of the period of the mains voltage, when the voltage at the output of the circuit exceeds the voltage at the battery. During the second half-cycle, diodes VD1, VD2 are closed and the battery is discharged through load resistance R4.

The charging current value is set by regulator R2 using an ammeter. Considering that when charging the battery, part of the current also flows through resistor R4 (10%), the readings of ammeter PA1 should correspond to 1.8 A (for a pulse charging current of 5 A), since the ammeter shows the average value of the current over a period of time, and the charge produced during half the period.

The circuit provides protection for the battery from uncontrolled discharge in the event of an accidental loss of mains voltage. In this case, relay K1 with its contacts will open the battery connection circuit. Relay K1 is used of the RPU-0 type with an operating winding voltage of 24 V or a lower voltage, but in this case a limiting resistor is connected in series with the winding.

For the device, you can use a transformer with a power of at least 150 W with a voltage in the secondary winding of 22...25 V.
The PA1 measuring device is suitable with a scale of 0...5 A (0...3 A), for example M42100. Transistor VT1 is installed on a radiator with an area of ​​at least 200 square meters. cm, for which it is convenient to use the metal case of the charger design.

The circuit uses a transistor with a high gain (1000...18000), which can be replaced with a KT825 when changing the polarity of the diodes and zener diode, since it has a different conductivity (see Fig. 2). The last letter in the transistor designation can be anything.


Rice. 2. Electrical circuit of the charger

To protect the circuit from accidental short circuit, fuse FU2 is installed at the output.
The resistors used are R1 type C2-23, R2 - PPBE-15, R3 - C5-16MB, R4 - PEV-15, the value of R2 can be from 3.3 to 15 kOhm. Any VD3 zener diode is suitable, with a stabilization voltage from 7.5 to 12 V.
reverse voltage.

Which wire is better to use from the charger to the battery.

Of course, it is better to take flexible copper stranded, but the cross-section needs to be selected based on the maximum current that will flow through these wires, for this we look at the plate:

If you are interested in the circuitry of pulsed charge-recovery devices using the 1006VI1 timer in the master oscillator, read this article: